

Practice Set -1 (SSA/ JPA - PSPCL)

70 Technical Question

Time: 1 hour and 15 minutes

- 1. Which one of the following is used as a passive-component in electric circuits?
 - (A) Resistor

(B) Transistor

(C) Tunnel diode

(D) Vaccum triode

- 2. The length of a conductor is doubled, then its resistance will be:
 - (A) Became same

(B) Became halfed

(C) Became doubled

(D) Four times increased

- 3. The defects of a primary cell is:
 - (A) Sulfation and buckling
- (B) Local action and polarization
- (C) Sulphation and local action
- (D) Buckling and polarization
- 4. The insulator used to separate commutator segment is:
 - (A) Asbestos

(B) PVC

(C) Mica

(D) Wood

5. Energy stored in a capacitor is:

(A)
$$E = \frac{1}{2}CV^2$$

(B)
$$E = \frac{1}{2}EA^2$$

(C)
$$E = \frac{1}{2} \times \frac{D^2}{E}$$

(D)
$$E = \frac{\theta}{V}$$

- 6. The shaft torque can be calculated by the formula:
 - (A) 0.159 \(\psi ZIa \)

(B) $\frac{735.5 \times BHP}{2\pi N}$

(C)
$$0.159 \frac{Eb \times Ia}{N}$$

(D) none of the above

- 7. What is the purpose of retardation test?
 - (A) Determining copper loss of series motor
 - (B) Determining copper loss of shunt motor
 - (C) Determining stray loss of series motor
 - (D) Determining stray loss of shunt motor

	(A)	$100\cos(313t+180^{\circ})$	(B)	$100\cos(313t)$
	(C)	$100\cos(313t + 90^{\circ})$	(D)	$200\cos(493t)$
9.	The opera	ating temperature of carbon filame	ent lamps a	are:
	(A)	3655°K	(B)	3172°K
	(C)	2972°K	(D)	2073°K
10.	The moto	r used in a ceiling fan is :		
	(A)	Split phase motor	(B)	Capacitor start motor
	(C)	Shaded pole motor	(D)	AC series motor
11.	The Thev	enin-Norton equivalent of a netwo	rk can be f	ound:
	(A)	if it contains voltage sources only	у	
	(B)	if it contains current sources onl	у	
	(C)	if it contains voltage/current sou	rces but no	t dependent sources
	(D)	even if it contains voltage/curren	t sources a	and or dependent sources
12.	Which typ	oe of file is available in half round	shape?	
	(A)	Bastard file	(B)	Rasp cut file
	(C)	Double cut file	(D)	Curved cut file
13.	The direc	tion of rotation of a motor is determ	mined by:	
	(A)	Fleming Right Hand Rule	(B)	Amperes Right Hand Rule
	(C)	Flemings Left Hand Rule	(D)	Cork Scrue Rule
14.	The fusin	g factor of HRC fuse will be :		
	(A)	1.1	(B)	1.4
	(C)	1.6	(D)	1.11

(A) $\frac{1}{4}$ joule

(C) 1 joule

(B) $\frac{1}{2}$ joule (D) 2 joule

16.	Avalanche	e break down in a semi conductor di	iode occur	res – when?
4.	(A)	forward bias exceeds a certain val	ue	
	(B)	the potential value is reduced to z	ero	
	(C)	forward current exceeds a certain	value	
	(D)	a reverse bias exceeds a certain va	lue	
17.	At which	length do you have to change the br	ushes of	a DC machine?
	(A)	$\frac{1}{2}$ of original length	(B)	$\frac{2}{3}$ of original length
	(C)	$\frac{1}{3}$ of original length	(D)	$\frac{3}{4}$ of original length
18.	The prima	ary and secondary connection of a d	istributio	n transformer is :
	(A)	primary and secondary star	(B)	primary and secondary delta
	(C)	primary delta, secondary star	(D)	primary star secondary delta
19.	Electric fi	eld intensity is :		
	(A)	scalar quantity	(B)	phasor quantity
	(C)	vector quantity	(D)	none of the above
20.		l of a 50 Hrtz Three Phase Inducti f poles of the motor is :	on Motor	at full load condition is 720 RPM, the
	(A)		(B)	8
	(C)	6	(D)	4
21.	Water hea	ater has minimum insulation resist	ance of :	
	(A)	1 mega ohm	(B)	2 mega ohm
	(C)	0.5 mega ohm	(D)	0.25 mega ohm
22.	The funct	ion of controll grid in a pentode tub	e is:	
	(A)	to accilarate the electrons emitted	from cat	hode
	(B)	to controll the secondary emission	from the	plate
	(C)	to collect electrons from the space	charge	
	(D)	to controll the number of electrons	s moving	from cathode to plate
23.	A 40 w la	mp is connected across a 240 volt su	apply wha	at is the resistance of the supply?
	(A)	14400 Ω	(B)	1440 Ω
	(C)	144 Ω	(D)	14.4 Ω

24.	The rotor of a three phase induction motor is made up of laminated cores because:			
	(A)	to reduce eddy current loss	(B)	to reduce hysterisis loss
	(C)	to reduce copper loss	(D)	all the above
25.	A DC Am	pere hour meter can be worked	on the effect	of:
	(A)	Magnetic effect	(B)	Electro dynamic effect
	(C)	Electro magnetic effect	(D)	Chemical effect
26.	The colou	r of lime light emitted by zinc-s	ilicate is:	
	(A)	Blue	(B)	Pink
	(C)	Green	(D)	Yellow
27.		ating current has a maximum r 1/360 second?	n value of 120	O Ampere. What is the instantaneous
	(A)	1039 A	(B)	103.9 A
	(C)	10.39 A	(D)	1.039 A
28.	The curve	representing ohms law is:		
	(A)	Parabola	(B)	Hyperpola
	(C)	Sine function	(D)	Linear
29.	The maxi	mum permissible load in a ligh	ting-sub circu	it is:
	(A)	800 watts	(B)	850 watts
	(C)	750 watts	(D).	900 watts
30.	The foam	factor of a sine wave is :		
	(A)	$\frac{\pi}{\sqrt{2}}$	(B)	$\frac{\pi}{2\sqrt{2}}$
	(C)	$\frac{\sqrt{2}}{\pi}$	(D)	$\frac{2\sqrt{2}}{\pi}$.
31.		a capacitor are given as 25 mic from this information we can d		also a plus sign written near one of its
	(A)	Electrolytic capacitor	(B)	Mica capacitor
	(C)	Ceramic capacitor	(D)	Paper capacitor
32.	A rotating	; part of any alternator will be	having:	
	(A)	split rings	(B)	commutator
	(C)	slip rings	(D)	brushes

6

A

33.	The distance between clips in vertical runs shall not exceed:			
	(A)	10 cm	(B)	15 cm
	(C)	20 cm	(D)	25 cm
34.	The colour	banks on a fixed carbon resistor are b	rown, rec	d, and black respectively its value is :
	(A)	12 Ω	(B)	120 Ω
	(C)	21 Ω	(D)	210 Ω
35.	What is th	ne dielectric constant value of rubber	r?	
	(A)	2.5	(B)	4
	(C)	1.5	(D)	6.7
36.	The numb	per of parallel paths in a wave wound	d generat	or is:
	(A)	equal to number of poles	(B)	four
	(C)	six	(D)	two
37.	The pract	ical unit of heat is expressed as:		
	(A)	Calories	(B)	Centigrade
	(C)	Joule	(D)	Newton
38.	Those alt	ernating wave form which deviate fr	om the id	leal sine wave is known as :
	(A)	Saw-Toothed wave form	(B)	Triangular wave form
	(C)	Square wave form	(D)	Distorted wave form
39.	The effect	tive turn ratio of the induction mach	ine stato	r and rotor is:
	(A)	the ordinary ratio of turns		# Office of the second of the
+	(B)	the ratio of turns-modified by the	winding f	actor of the stator and rotor
	(C)	a variable related to the rotor spee		
	(D)	the ratio of turns modified by the	rotor resi	stance
40.	A wire m	easuring 1 mm is diameter has a cro	ss section	nal area of:
	. (A)	1 mm ²	(B)	1 cm ²
	(C)	0.87 mm ²	(D)	0.78 mm ²
41.	The type	of insulator used in stay wire is:		
	(A)	pin type	(B)	suspension type
	(C)	shackle type	(D)	egg type

	type or po	2. A sheathed 3 core cable is to be used as a power cord for connecting heating appliances. 'type of power cord is used in electric iron:			e ·		
	(A)	PVC sheathed	(D)	Lead sheathed			
	(C)	Silk-cotton-bridle	(B) (D)	Rubber sheathed			
	(0)	Shk-cotton-bridle	(D)	Rubber sneathed			
43.	The no lo	ad current of an induction motor is —		——— approximately.			
	(A)	40% of full load current	(B)	10% of full load current			
	(C)	20% of full load current	(D)	100% of full load current			
44.	The disadvantage of spring control over gravity control:						
	.(A)	it does not give a uniform speed					
	(B)	it can only be used in parallel positi	ion				
	(C)	it deteriorates with time					
	(D)	all of the above					
45.	The opera	tion of a JFET involves :					
	(A)	a flow of minority carriers	(B)	recombination			
	(C)	flow of majority carriers	(D)	negative resistance			
46.	The simpl	est way of varying the flux produced	by an e	lectro magnet is :			
	(A)	increasing and decreasing the numb					
	(B)	using an exciting coil with number	of tapin	gs			
	(C)	varying core position for the exciting	g coil				
	(D)	varying the current through the exc	iting co	il .			
	The instru	ment used for measuring medium ra					
47.	THE HIGH	ament used for measuring medium ra	inge of i	resistance is :			
47.	(A)	series type ohm meter	inge of i	resistance is : wheat stone bridge			
47.							
47.	(A) (C)	series type ohm meter shunt type ohm meter	(B) (D)	wheat stone bridge megger			
	(A) (C)	series type ohm meter	(B) (D)	wheat stone bridge megger			
	(A) (C) If a three	series type ohm meter shunt type ohm meter phase motor operates in single phasi	(B) (D) ng it wi	wheat stone bridge megger Il altimately make the motor :			
	(A) (C) If a three (A) (C)	series type ohm meter shunt type ohm meter phase motor operates in single phasis to burn out	(B) (D) ng it wi (B) (D)	wheat stone bridge megger Il altimately make the motor: to carry no load not to run efficiently			
48.	(A) (C) If a three (A) (C)	series type ohm meter shunt type ohm meter phase motor operates in single phasis to burn out to run with tripple speed	(B) (D) ng it wi (B) (D)	wheat stone bridge megger Il altimately make the motor: to carry no load not to run efficiently			
48.	(A) (C) If a three (A) (C) The brief p	series type ohm meter shunt type ohm meter phase motor operates in single phasis to burn out to run with tripple speed period during which coil remains show	(B) (D) ng it wi (B) (D) rt circui	wheat stone bridge megger Il altimately make the motor: to carry no load not to run efficiently ted is known as:			
48.	(A) (C) If a three (A) (C) The brief p (A) (C)	series type ohm meter shunt type ohm meter phase motor operates in single phasis to burn out to run with tripple speed period during which coil remains shown and the seriod	(B) (D) ng it wi (B) (D) rt circui (B)	wheat stone bridge megger Il altimately make the motor: to carry no load not to run efficiently ted is known as: cross magnatising period			
48.	(A) (C) If a three (A) (C) The brief p (A) (C)	series type ohm meter shunt type ohm meter phase motor operates in single phasis to burn out to run with tripple speed period during which coil remains show neutralising period cummulation period	(B) (D) ng it wi (B) (D) rt circui (B)	wheat stone bridge megger Il altimately make the motor: to carry no load not to run efficiently ted is known as: cross magnatising period			

51.	For gener	ating a 1 kilo Hertz note, t	he most suita	able c	circuit is:
	(A)	Hartly oscillator		(B)	Colpits oscillator
	(C)	Tuned-collector oscillator		(D)	Wein bridge oscillator
52.	When the		possision-th	rougl	n a star delta stater the stator curren
	(A)	$\sqrt{3}$ times the current tak	en in delta p	ositio	on
	(B)	the times the current tak	en in delta po	ositio	n
	(C)	$1/\sqrt{3}$ times the current t	aken in delta	posi	tion
	(D)	$\frac{1}{3}$ times the current take	n in delta pos	sition	
53.	Armourin	g is provided in the cables	to safe guard	agai	nst:
	(A)	moisture entry		(B)	mechanical injury
	(C)	white out attack	*	(D)	bursting on failure
54.	The trans	ducer used in a strain guaș	ge is :		
	(A)	an active transducer			
	(B)	a device that converts ele	ctrical voltag	e in t	o mechanical displacement
9 9	(C)	a device that converts me	chanical disp	lacer	ment in to electrical current
	(D)	a device that converts me	chanical disp	lacer	ment into a changing resistance
55.	The mate	rial used for making the st	arting resista	ince c	of a starter is :
	(A)	Eureka		(B)	Tungstone
	(C)	Nichrome		(D)	Kanthal
56.	Hystevisi	s loss of a single phase trar	nsformer is ca	lcula	te by the formula is:
	(A)	$RB^{1.2} \max f$		(B)	$QB^2 \max f$
	(C)	$PB^{1.6} \max f$		(D)	$\frac{w}{V1^2}$
57.	The direct	tion of rotation of an ordina	ary shaded po	le m	otor:
	(A)	can be reversed by revers	ing the suppl	y ter	minal-actions of the stator winding
	(B)	can not be reversed			
	(C)	can be reversed by open c	ircuiting the	shad	ing-rings
	(D)	can be reversed by short of	circuiting the	shad	ling rings

98.	The value	e of absolute permittivity	y of air is ;		
	(A)	$9 \times 10^9 \text{ F/M}$	(B)	$5.54 \times 10^6 \text{F/M}$	
	(C)	9×10^{-9} F/M	(D)	$8.854 \times 10^{-12} \text{ F/M}$	
59.		ied voltage of a transfor ore flex density will :	rmer is increased by	50% while its frequency is re	educed to
	(A)	became three times	(B)	became 3/4	
	(C)	became 1/3	(D)	remain the same	
60.	How man	y parallel paths in a trip	olex winding for the f	low of armature current?	
	(A)	2	(B)	4	
	(C)	6	(D)	8	
61.	The Q poi	nt in a voltage amplifier	is selected in the mi	ddle of the active region becau	ise:
	(A)	it gives distortionless	output		
	(B)	the operating coil then	becomes very stable		
	(C)	the circuit then require	es less number of res	istors	
	(D)	it then requires a smal	ll DC voltage		
62.	The EMF	per cell of an Edison cel	l is :		
	(A)	1.3	(B)	1.2	
	(C)	1.5	(D)	1.4	
63.	A transfor	rmer has the maximum	efficiency when coppe	er loss/iron loss is :	
	(A)	2	(B)	1.5	
	(C)	1	(D)	0.5	
64.	A synchro	nous motor draws 0.8 le	ading power factor c	urrent the armature reaction i	s:
	(A)	Magnatising			
	(B)	De magnatising			
	(C)	Magnatising and cross	magnatising		
	(D)	De magnatising and cr	oss magnatising		
65.	What is th	ne negative phase seque	nce of three phase co	nnection?	
	(A)	RYB	(B)	RBY .	
	(C)	YRB	(D)	BYR	
66.	If the full	load iron loss of a transf	former is 500 w. Wha	t will be its iron loss at half lo	ad?
	(A)	125 w	(B)	250 w	
	(C)	500 w	(D)	100 w	

67.	A low pov	ver factor of the circuit means:		
	(A)	it draws more active power		
	(B)	it draws more reactive power		
	(C)	it draws less line current	76	
	(D)	it causes less voltage drop in the line		
68.	A single V	Valt meter method is used to measure	power	in:
	(A)	Balanced star connection	(B)	Balanced delta connection
	(C)	Un balanced star connection	(D)	Un balanced delta connection
69.	A capacit	y to rating ratio of Scott connection is :		
	(A)	66.6%	(B)	76.6%
	(C)	86.6%	(D)	96.6%
70.	Air gap b	etween the two electrodes of a spark pl	ug is :	
	(A)	0.5 to 0.7 mm	(B)	0.7 to 0.9 mm
	(C)	0.9 to 0.11 mm	(D)	0.11 to 0.13 mm